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We study the condensation phenomenon in a zero range process on weighted scale-free networks in order to
show how the weighted transport influences the particle condensation. Instead of the approach of grand
canonical ensemble which is generally used in a zero range process, we introduce an alternate approach of the
mean-field equations to study the dynamics of particle transport. We find that the condensation on the scale-
free network is easier to occur in the case of weighted transport than in the case of weight-free networks. In the
weighted transport, especially, a dynamical condensation is even possible for the case of no interaction among
particles, which is impossible in the case of weight-free networks.
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I. INTRODUCTION

Condensation, a concept originally introduced by Bose
and Einstein to explain the particle condensation in momen-
tum space, is an intriguing phenomenon observed in real
space, such as jamming in traffic communication �1,2�,
bunching of buses �3�, and many mass transport models �4�.
In condensation, a finite fraction of particles may be con-
densed onto a single site. Nowadays, such phenomenon is
found in the structure of complex networks, which character-
ize many natural and manmade systems, such as the Internet,
airline transport system, power grid infrastructures, and the
world-wide web �5,6�. For example, Bianconi and Barabasi
mapped the fitness model to a Bose gas by assigning an
energy to each node and found that the fittest node can attract
a finite fraction of all links �7,8�. Besides the static conden-
sation of the links of complex networks, the dynamical con-
densation on scale-free �SF� networks is found recently that
the particles may completely condense on the hub in the
transport of zero range process �ZRP�, where the interaction
only occurs when the particles are stay at the same node
�9,10�.

The previous studies of ZRP are mainly focused on regu-
lar lattices �4,11,12�. It is found that, in the steady state of the
one-dimensional lattice, a finite fraction of the total mass
will condense onto a single site when the global mass density
is increased beyond a critical value. However, most of the
realistic networks are not regular but SF �5,6�. Comparing to
the regular lattice, the SF network is heterogeneous with
power-law degree distribution P�k��k−� and can be charac-
terized by the Barabasi-Albert �BA� model with �=3 �13�
and its related modified models �14–18�. It is pointed out that
the structure inhomogeneity is an important factor in under-
standing many dynamical processes in SF networks �19–21�,
such as rumor propagation, virus spreading, and searching
information, etc. For studying the influence of structure in-
homogeneity on ZRP, Noh et al. considered ZRP in the BA
model and found that the inhomogeneous structure makes
particles to condense on the hub when the jumping rate � is
smaller than the critical point �c �9,10�. For a specific par-
ticle, its behavior can be considered as a random walk; and
for a large number of particles, their behaviors are a kind of
diffusion processes. As the diffusion makes the number of

particles on a node fluctuate, the usually used approach to
deal with the transport statistical properties in ZRP is the
grand canonical ensemble, which can easily give the mean
particles on each node. Recently, Ref. �4� uses the approach
of canonical ensemble to explore the condensed phase and
analyze the mass distribution. Here we introduce an alternate
approach to deal with the ZRP, i.e., the mean-field equations,
and find that our approach will give the same results as that
given by the approach of grand canonical ensemble �9,10�,
when it is used in the same situations. Moreover, we use this
approach to study the case of weighted transport and find
that the added weight may push forward the critical value �c
to a larger value �c�, and �c� may be even over unity!

Let us call the network with the same weight to transfer
particles on each link as a weight-free network. Besides a
weight-free network, there is also a weighted network where
each link has different weight to transfer particles, which
yields a more realistic description of communication in real
networks. Reference �9,10� investigated how the network
structure influences particle dynamics. Our motivation here
is to study how the weight of link influences the particle
dynamics. In the weighted network, each link or node is
associated with a weight wi. The weight may represent the
intimacy between individuals in social networks, or the
bandwidths of routers and optical cables in the Internet. The
strength of a node, si, is defined as the sum of all the weights
of links of the node. It is found that the strength strongly
relies on its degree with s�k��k� �22–24�, where � is differ-
ent constants for different networks. For example, � is unity
for the science cooperation network where the weight of a
link between two scientists is given roughly by the frequency
of their collaboration and 1.5 for the world-wide airport net-
work where the weight is taken as the total number of pas-
sengers of the direct flights between two connected cities.
The previous results on condensation focus on the case of
�=0 �9,10�. In this paper, we consider the particle transport
on the weighted network, i.e., the case of ��0. Our results
show that the condensation is easier to occur in the case of
��0 than that of �=0. Especially since the condensation
may occur even when the interaction among particles does
not exist, which is impossible in the case of �=0.

The paper is organized as follows. In Sec. II, we briefly
review the approach of grand canonical ensemble and its
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results of condensation on SF networks with weight-free
transport. Then in Sec. III, we give the dynamical mean-field
equations for the weighted transport on SF networks. Its
limit will give the results of weight-free transport. In Sec. IV,
we make numerical simulations to confirm the predictions
given in Sec. III. Finally, the conclusions are given in Sec. V.

II. THE APPROACH OF GRAND CANONICAL
ENSEMBLE FOR THE CASE OF WEIGHT-FREE

TRANSPORT

The approach of grand canonical ensemble was first ap-
plied in the ZRP of a one-dimensional system �4,11,12,25�
and recently used in the SF networks �9,10�. Here we briefly
review the results obtained in �9,10�. Suppose N particles are
randomly put on a network of L nodes and each node i
can be occupied by any integral number of particles
ni=0,1 ,2 , . . . ,N. Because of the interaction among the par-
ticles at the same node, some of the particles will jump out of
the node and hop to other nodes, making the particle redis-
tribution among n1 ,n2 , . . . ,nL. Hence a microscopic configu-
ration is represented by n=n1 ,n2 , . . . ,nL. The particles at
node i with ni�0 may jump out with the jumping rates p�ni�
and hop from node i to one of its neighbors j along the link
with the hopping probability Tj←i. In the SF networks with
weight-free, Tj←i is taken as 1/ki if i and j are linked and 0
otherwise, i.e., a particle jumping out of the node i is allowed
to hop to one of its neighboring nodes selected randomly,
and the jumping rate is taken as
p�ni�=ni

�. �=0 means that only one of ni particles will jump
out per each time, indicating that the particles are attracting
each other. In the case of �=1, all the ni particles will jump
out, implying they are moving independently and the system
reduces to a noninteracting system of N random walkers.
��1 means there is a repulsive interaction among particles
of one node, while ��1 means the attractive interaction
among particles. With enough time of evolution, the system
will reach a stationary state. The mean occupation number in
the stationary state is

mi�z� = x� � ln F��x�
�x

�
x=zki

, �1�

where z denotes the fugacity and

F��x� = �
n=0

�
xn

�n!�� . �2�

It is found that the complete condensation occurs at
�=0, where the whole fraction of particles is concentrated at
the hub �9,10�, while there is no condensation at �=1. For
the case of ��0, there is a critical

�c = 1/�� − 1� , �3�

where the condensation will occur for ���c and does not
occur when ���c. There is a crossover degree kc for
0����c, which is defined as the degree with the average
occupation number mi=1. mi will be greater than 1 for the
nodes with ki�kc and smaller than 1 for the nodes with

ki�kc. There will be a condensation when there exists a
finite kc�0 and no condensation otherwise. For ���c, kc
can be expressed as

kc � � �ln kmax��c for � = �c

�kmax�1−�/�c for � � �c,
	 �4�

where the nodes with k�kc will be the core of condensation,
i.e., most of particles will hop to those nodes with k�kc.

Furthermore, there is a scaling

mi = G��ki/kc� , �5�

where the scaling functions behaves as G��y	1��y and
G��y��y
1��y1/�.

III. DYNAMICAL MEAN-FIELD EQUATIONS FOR THE
CASE OF WEIGHTED TRANSPORT

According to the strength distribution s�k��k� �22,23�,
the strength is a nonlinear function of k and the nodes with
the same k have the same strength. The strength will be
different for the ki neighbors of node i. When a jumping out
particle hops to one of its neighbors, it will not choose all the
links of the node on equal footing but with different rates to
different neighbors. Therefore, we here assume the hopping
rate Tj←i�kj

�. Making renormalization, we have

Tj←i =
kj

�

�
j��Bi

kj�
�

, �6�

where Bi denotes the set of neighbors of node i and Eq. �6�
will return to the case of weight-free networks when �=0.

We still suppose here that the jumping rates p�ni� satisfy
p�ni�=ni

� and restrict � to 0���1. With the evolution, ni

will change with time and may be different for different
nodes with the same k. For using the mean-field approach,
we transfer the description of ni for each node to the descrip-
tion of the mean occupation number mk�t� for the nodes with
the same k, i.e., mk�t� is the average of all the ni of the nodes
with degree k. Hence, mk�t� is no longer necessary to be an
integer. Correspondingly, we transfer the jumping rate p�ni�
to p�mk�=mk

�. After this transformation, let us see how many
particles of a node can jump out at each time step. When
mk�1, mk

�
mk and the jumping rate is, in fact, mk but not
mk

� as we do not have so many average particles mk
� at those

nodes with degree k. When mk�1, mk
��mk and hence the

jumping rate is mk
�. Except the aspect of jumping out, at the

same time, a node accepts particles from its neighbors. The
incoming particles can be classified into two parts: One from
the node with mk�1 and the other from the nodes with
mk
1. The incoming particles from one neighboring node
with degree k� is P�k� 
k�mk��t�k

� /� j�Bk�
kj

� when mk��t��1

and P�k� 
k�mk�
� �t�k� /� j�Bk�

kj
� when mk��t�
1, where

P�k� 
k� is the conditional probability for a link which repre-
sents the possibility for a node with degree k to connect a
node with degree k�. We use k0 and kmax to represent the
minimum and maximum degree of the network, respectively,
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and use kc�t� to denote the degree for mk�t�=1. In the BA
model, k0 is a constant and kmax�L� with �=1/ ��−1�. By
all these quantities, we have the mean field equations for the
evolution of mk�t�

�mk�t�
�t

= − mk�t� + k��k0

kc

P�k�
k�mk��t�
k�

�
j�Bk�

kj
�

+ �
kc

kmax

P�k�
k�mk�
� �t�

k�

�
j�Bk�

kj
��, mk�t� � 1,

�mk�t�
�t

= − mk
��t� + k��k0

kc

P�k�
k�mk��t�
k�

�
j�Bk�

kj
�

+ �
kc

kmax

P�k�
k�mk�
� �t�

k�

�
j�Bk�

kj
��, mk�t� 
 1, �7�

where � j�Bk�
kj

� denotes the sum to all the neighbors of the

node with degree k�. Obviously, mk�t� depends on P�k� 
k�.
For getting the detailed form of P�k� 
k�, here we consider
the BA model as the underlying network. As the BA model is
nonassortative mixing, its conditional probability satisfies
P�k� 
k�=k�P�k�� / k� �26,27�. Borrowing the definition of
the average degree of the nearest neighbors of a node with

degree k, i.e., k̄nn�k�=�k�k�P�k� 
k�, we have the average

k̄nn
� �k� = �

k0

kmax

P�k�
k�k��dk� = k�+1�/k� . �8�

It is easy to see that k̄nn
� does not depend on the degree k.

Hence, we have � j�Bk�
kj

�=k�k̄nn
� and Eq. �7� becomes

�mk�t�
�t

= − mk�t� + k�+1A�t�, mk�t� � 1

�mk�t�
�t

= − mk
��t� + k�+1A�t�, mk�t� 
 1 �9�

where A�t�= ��k0

kcP�k��mk��t�+�kc

kmaxP�k��mk�
� �t�� / �k�k̄nn

� �.
Equation �9� is the evolution equation of particles and will

reach the stationary state when it evolves enough time. In the
stationary state, we may solve Eq. �9� by �mk�t� /�t=0 to get
the stabilized mk. By doing this we have

mk = k�+1A, mk � 1

mk = �k�+1A�1/�, mk 
 1 �10�

where A= ��k0

kcP�k��mk�+�kc

kmaxP�k��mk�
� � / �k�k̄nn

� � does not

depend on the time t. We have A=kc
−��+1� from the condition

mk=1 for k=kc. Instituting A into Eq. �10� we have

mk = �k/kc��+1, mk � 1

mk = �k/kc���+1�/�, mk 
 1. �11�

Obviously, Eq. �11� will go back to Eq. �5� when �=0.
Recall that in the case of a one-dimensional lattice, one

necessary condition for the condensation is that its density
�=N /L should be larger than a critical value �c�0. While in
the BA model of weight-free networks, there is no �c for �.
The condensation occurs at any finite value of the particle
density, i.e., �c=0, and the particles can completely condense
at the hub or a few high-degree nodes �9,10�. Here the limit
case of �=0 is the BA model of weight-free networks, hence
we expect �c=0 for ��0, which will be demonstrated later.
For confirming it, in the case of weighted transport we set
the particle density ��1. In the limit of L ,N→� we have
mk�1 for all nodes if there is no condensation; otherwise,
part of mk will become greater than unity. Therefore, the kc
for mk=1 is nothing but the crossover degree. The number of
condensed particles is

Ncon � N�
kc

kmax

�k/kc���+1�/�P�k�dk . �12�

In the condensed state, the nodes with kc�k�kmax have
the capacity to take an infinite number of particles. The non-
divergence of the integration in Eq. �12� gives

�c� =
� + 1

� − 1
. �13�

The condensation will occur for the case of ���c�. From Eq.
�13� one can see that in the case of �=0, �c�=1/ ��−1� re-
turns to the case of weight-free networks of Eq. �3�. By
Ncon /N�O�1�, we have

kc
��+1�/� � �

kc

kmax

k��+1�/�k−�dk , �14�

and further we have

kc �� �ln kmax��c for � = �c�

�kmax�1−�/�c� for � � �c�.
	 �15�

Obviously, it has the same form with Eq. �4� except �c is
replaced by ��. From Eq. �15� one can see that kc does not
depend on the particle density �, indicating that the conden-
sation can occur at any �. Therefore, we also have �c=0 for
the weighted transport.

For the situation of ���c�, from Eq. �11� the particles
accumulated at the hub are

mhub � �kmax/kc���+1�/� � �kmax
�/�c����+1�/� � L , �16�

indicating that mhub scales linearly with L and hence there is
condensation at the hub. And for the situation of ���c�, the
particles at the hub are

CONDENSATION IN A ZERO RANGE PROCESS ON¼ PHYSICAL REVIEW E 74, 036101 �2006�

036101-3



mhub � kmax
��+1�/� � L�c�/�, �17�

indicating mhub scales sublinearly with L and hence there is
no condensation. When there is condensation, from Eq. �11�
we have

mk � k �18�

with = ��+1� /� for ���c� and mk�1. The scaling  will
decrease to ��+1� /�c�=�−1 when � increase to �c�, which
gives a critical c=2 for �=3. Therefore, we can judge the
occurrence of condensation by checking the scaling  for
mk�1, i.e., there is condensation if ��−1 and no conden-
sation otherwise.

Moreover, from Eq. �13� we can see that, for the BA
model with �=3, it is possible to have �c��1 for ��1. In
this case the condensation will occur for the whole range of
0���1, which is impossible in the case of weight-free net-
works. For example, taking �=1 for the case of weight-free
networks, all the particles at node i will jump out of the node
per each time, resulting in a uniform distribution of particles
and hence no condensation. However, in the case of
weighted transport, the situation is totally changed. During
the evolution, all the particles will jump out at each time and
hop with the favorite to one of the neighbors with the largest
degree. Gradually, most of the particles will move to the
larger and larger nodes, and finally to around the hub. After
that, all the particles at the hub will jump out per each time
when �=1, but at the same time, most of the particles of the
hub’s neighboring nodes will hop to the hub, resulting in a
dynamical equilibrium. Namely, �=1 for �c��1 is a kind of
completely exchange condensation, which is different from
the case of ��1, where most of the previous particles at the
hub will still stay at the hub. This kind of complete exchange
condensation also exists for the case of 1����c�, where the
jumping rate p�mk�=mk is the same with that of �=1.

IV. NUMERICAL SIMULATIONS

In numerical simulations, we first construct a BA growing
network with the size L=2000, the average degree k�=6,
and the degree distribution P�k��k−3 according to the algo-
rithm given in Refs. �13,18�. Then we put N=1000 particles
at the L nodes randomly, i.e., the particle density �=0.5.
Hence mk�t=0� is uniform for different k, see the horizontal
line for the case of t=0 in Fig. 1. At each time step, we let
the N particles evolve according to the jumping rate p�ni�
and the hopping rate Tj←i in Eq. �6�. Namely, we choose
min�ni ,ni

�� particles from the ni particles of node i and let
them hop to the neighbors of node i according to Eq. �6�,
where min�ni ,ni

�� means taking the smaller one from ni and
ni

�. By this way, we find that the numerical simulations com-
pletely confirm the evolution Eq. �9� and the stationary dis-
tribution Eq. �11�. For example, from Eq. �9� we have
mk�t=1�=A�0�k�+1�k�+1, indicating a power-law relation
between mk and k for all the k at t=1. Our numerical simu-
lation has confirmed it; see the straight line for the case of
t=1 in Fig. 1 where the parameters are taken as �=0.4 and
�=0.2��c�=0.7. This algebraic relation will be kept until the

emergence of some mk�t��1. After that, we know from Eq.
�9� that the nodes with mk�t��1 for small k will keep the
algebraic relation mk�t��A�t−1�k�+1 but the nodes with
mk�t��1 for large k will depend on both k and mk�t−1�
because of the nonlinearity of the first term mk

��t� in Eq. �9�.
The numerical confirmation is given by the curves for the
cases of t=8 and 64 in Fig. 1. It is easy to see from these two
curves that the part with smaller k has the same slope with
that of the curve of t=1 and the part with larger k is compli-
cated. After further evolution, the system will reach its sta-
tionary state. The lowest lines in Fig. 1 show the numerical

FIG. 1. Evolution of particle distribution in weighted transport
for an arbitrary �=0.4 and �=0.2��c=0.7.

FIG. 2. �a� Stabilized mk versus k for �=0.4 and �c�=0.7 where
the lines with “squares,” “stars,” and “circles” denote �=0.2, 0.5,
and 0.8, respectively. The drawn lines for slope s=1.4, 7.0, 2.8, and
1.75 are for reference. �b� Crossover degree kc versus �.
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results for t=1024 and 40 000, respectively. Obviously, the
case of t=1024 is overlapped with the case of t=40 000,
indicating that the stationary state is reached.

In the stationary state, from Eq. �11� we know that the
stabilized mk will have two slopes and both depends on the
weight scaling �, i.e., slope �+1 for mk�1 and slope
��+1� /� for mk�1. The numerical simulations have com-
pletely confirmed this. Figure 2�a� shows the results for
�=0.4 and �=0.2, 0.5, and 0.8, respectively. By Eq. �13� we
get �c�=0.7, so the case of �=0.2 and 0.5 should have con-
densation and the case of �=0.8��c� no condensation. This
can be confirmed by checking the scaling  in Eq. �18�. It is
easy to see from Fig. 2�a� that the slopes are 7.0 and 2.8 for
the cases of �=0.2 and 0.5, which are greater than c=2, and
1.75 for the case of �=0.8, which is less than 2. These values
also confirm the prediction of Eq. �11� in which we have the
slopes �+1=1.4, and ��+1� /�=7, 2.8, and 1.75 for
�=0.2,0.5, and �=0.8, respectively, see the solid reference
lines with different slopes s in Fig. 2�a�. On the other hand,
from Eq. �15� we have ln kc�C�. The crossover degree kc
can be measured from the intersection between the dotted
line mk=1 and the measured curves in Fig. 2�a�. By this way
we can get kc for different �. Figure 2�b� shows the result. It
is easy to see that Fig. 2�b� is a straight line with negative
slope, which qualitatively explains Eq. �15�.

By the fact that �c means condensation, we may de-
termine �c� numerically. For a given �, we increase � gradu-
ally and check  for each �. The critical �c� can be identified
as the value that separates the �2 and �2. By this way,
we obtain �c� for different �. Figure 3 shows the result. Ob-
viously, it is a straight line with slope 0.5 and thus confirms
Eq. �13�. When � is over unity, however, we cannot obtain �c�
numerically as � is limited to unity for the jumping rate p�n�.

Furthermore, from Eq. �11� we can see that the two slopes
for mk�1 and mk�1 will become the same when �=1. This
phenomenon is also confirmed by our numerical simulation.
Figure 4 shows the result where the measured slope 2.37 �the
solid line� is consistent with the theoretical prediction

�+1= ��+1� /�=2.4 and the fact that 2.37�2 confirms the
condensation for �=1��c�.

V. DISCUSSIONS AND CONCLUSIONS

The condensation in ZRP was usually discussed in mass
transport and only little attention had been paid to the inter-
acting dynamical systems on SF networks. The work of Noh
et al. makes ZRP on SF networks become reality. As a com-
plex network has very rich features, Noh’s work is very im-
portant but only the beginning of ZRP on complex network.
There are a plenty of factors in networks which may affect
the condensation, such as the distribution, clustering coeffi-
cient, assortativity, and weight, etc. This paper investigates
one of the factors. Our results show that the weight may
significantly influence the condensation and make it possible
for the condensation to occur even for �=1 when �c��1,
which is impossible in the weight-free network. We will con-
tinue along this way.

In conclusions, we have discussed the dynamical conden-
sation on the SF network with weighted transport. We have
introduced a set of dynamical mean-field equations in ZRP to
describe the evolution of a particle and find that the particle
condensation depends on not only the jumping rate, but also
the weight of transport. Our results show that the mean-field
approach is completely equivalent to the grand canonical en-
semble in the situation of �=0 and the condensation is easier
to occur in the weighted network than that in the network
with weight-free. The critical value of condensation in
weighted network is �c�= ��+1� / ��−1�, which is larger than
the value �c=1/ ��−1� of weight-free networks.
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FIG. 3. The critical parameter �c� of condensation versus the
weight parameter �.

FIG. 4. The stabilized mk versus k for �=1.4 and �=1��c�
=1.2.
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